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TL;DR

We extend methods from spatial statistics and, hence, link

GPs to SPDEs for temporal signals on graphs

Using the analogues of well-known SPDEs from spatial

statistics, we derive non-separable spatio-temporal kernels

on graphs

We show effectiveness on synthetic data sets and applied

machine learning problems: prediction of the distribution of

chickenpox and the COVID-19 epidemic

Introduction

Gaussian processes are a non-parametric machine learning

paradigm, in which we model the target function as a stochas-

tic process, whose evaluation at any finite set of points has

a joint Gaussian distribution. A Gaussian process f (x) ∼
GP(m(x), k(x, x′)) is defined by its mean function m(x) and co-

variance function k(x, x′).
The kernel encapsulates prior knowledge, and defining a good ker-

nel is one of the key ingredients and challenges of setting up the

GP model. GPs can be extended to vector-valued functions using

multioutput GPs.

Problem. Standard GP toolchains include various kernels on con-

tinuous domains. However, the application of GPs to other do-

mains is often restricted by the unavailability of principled kernels.

We thus provide tools for spatio-temporal graph functions.

Methods

Framework: SPDE → graph kernel

i Define an SPDE, using prior knowledge about the underlying

process

ii Convert the continuous SPDE to a graph counterpart

iii Solve the graph counterpart

iv Derive corresponding mean and covariance function of GP on

graph

Prior model
∂u
∂t = ∆u + dWt

Covariance
k(x,x′)

GP model
GP(m(x), k(x,x′))
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du
dt = −Lu + dWt

Time →

Working with the graph allows for di-
rect modelling of spatio-temporal diffu-
sion over the graph nodes as described
by the SPDE.

Fig. 1: Illustration of the proposed approach

Stochastic Heat Equation Kernel (SHEK)

The stochastic heat equation kernel (SHEK) on graphs can be

defined by adding spatio-temporal white noise, or for convenient

integration, as a formal differential of the Wiener process
.

Wt:

du

dt
= −cL̃u + σ

.
Wt.

The solution is given by a Gaussian process:

u(t) ∼ GP(µ(t), Cov[u(s), u(t)]), with µ(t) = e−cL̃tu(0),

Cov[u(t), u(s)] = σ2

c
e−cL̃t−cL̃>s(ec(L̃+L̃>) min(t,s) − I)(L̃ + L̃>)−1.

Or, when the matrix L̃ is self-adjoint (the graph is undirected), as

µ(t) = e−cL̃tu(0), Cov[u(t), u(s)] = σ2

2c

(
e−cL̃|t−s| − e−cL̃(t+s)

)
L̃−1.

The kernel is parameterized by diffusivity c, noise scale σ, and
parameters of the fractional Laplacian ν and κ. For matrix-valued
white noise:

Cov [u(t), u(s)] = P ∗C(t, s)P ,

where P is a unitary matrix: P L̃P ∗ = diag(λ1, . . . , λ|V |). The
matrix P exists because L̃ is normal and positive definite. C(t, s)
is defined for t ≥ s as:

C(t, s)i,j = 1
c

(P ΣΣ>P ∗)i,j

λi + λj
(exp(−cλi|t − s|) − exp(−c(λit + λjs))).
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f3(t)
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Fig. 2: SHEK and SWEK on a three-vertex graph

Stochastic Wave Equation Kernel (SWEK)

The stochastic wave equation kernel (SWEK) on undirected

graphs is defined by the second-order matrix differential equation

d2u

dt2 = −c2L̃u + σ
.

Wt,

and a solution to this equation for undirected graphs can be

expressed by the Gaussian process:

u(t) ∼ GP(µ, Cov[u(s), u(t)], with

µ(t) = 1
c
L̃−1

2 sin(c
√

L̃t)P .
u(0)+ cos(c

√
L̃t)P u(0),

Cov[u(s), u(t)] = σ2Θ−2
 cos(Θ(t − s)) min(t, s)−

1
2

cos(Θ max(t, s)) sin(Θ min(t, s))Θ−1
,

where Θ = c
√

L̃ and P is defined by the diagonalization of the

fractional Laplacian matrix: L̃ = P −1L̃dP .

Experiments

Tasks:

i interpolation of a spatiotemporal graph signal

ii extrapolation of a spatiotemporal graph signal

Domains:

i heat and wave distribution over a one-dimensional line

ii spreading of COVID-19 cases across the United States

iii spreading of chickenpox cases over Hungarian counties
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Fig. 4: SHEK fit to COVID-19 data for two states.
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(a) SHEK on wave dataset (node #1).
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(b) SWEK on wave dataset (node #1).

Fig. 5: SHEK and SWEK fit to synthetic wave data set.
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