Non-separable Spatio-temporal

Graph Kernels via SPDEs

TL;DR

= We extend methods from spatial statistics and, hence, link
GPs to SPDEs for temporal signals on graphs

= Using the analogues of well-known SPDEs from spatial
statistics, we derive non-separable spatio-temporal kernels
on graphs

= \We show effectiveness on synthetic data sets and applied
machine learning problems: prediction of the distribution of

chickenpox and the COVID-19 epidemic

Introduction

Gaussian processes are a non-parametric machine learning
paradigm, in which we model the target function as a stochas-
fic process, whose evaluation at any finite set of points has
a joint Gaussian distribution. A Gaussian process f(x) ~
GP(m(x), k(x,x)) is defined by its mean function m(x) and co-
variance function k(x, x').

he kernel encapsulates prior knowledge, and defining a good ker-
nel is one of the key ingredients and challenges of setting up the
GP model. GPs can be extended to vector-valued functions using
multioutput GPs.

Problem. Standard GP toolchains include various kernels on con-
finuous domains. However, the application of GPs to other do-
mains is often restricted by the unavailability of principled kernels.
We thus provide tools for spatio-temporal graph functions.

Methods

Framework: SPDE — graph kernel

| Define an SPDE, using prior knowledge about the underlying
DIroOCess

I Convert the continuous SPDE to a graph counterpart
11l Solve the graph counterpart

v Derive corresponding mean and covariance function of GP on
oraph

Working with the graph allows for di-
rect modelling of spatio-temporal diffu-
sion over the graph nodes as described
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by the SPDE.

Fig. 1: lllustration of the proposed approach

Stochastic Heat Equation Kernel (SHEK)

The stochastic heat equation kernel (SHEK) on graphs can be
defined by adding spatio-temporal white noise, or for convenient
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Fig. 2: SHEK and SWEK on a three-vertex graph

Stochastic Wave Equation Kernel (SWEK)

The stochastic wave equation kernel (SWEK) on undirected
oraphs is defined by the second-order matrix differential equation

integration, as a formal differential of the Wiener process W;: d%u Y .
du —2:—C L’U,—|—O'Wt,
— = —CE’U, + O’Wt. - - i - -
dt and a solution to this equation for undirected graphs can be
The solution is given by a Gaussian process: expressed by the Gaussian process:
u(t) ~ GP(p(t), Coviu(s), u(t)]), with u(t) = e~ Fu(0), w(t) ~ GP(p, Covlu(s), u(t)], with
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Or, when the matrix L is self-adjoint (the graph is undirected), as Cov|u(s), u(t)] = 02@2(003(@(75 — 5)) min(t, s)—
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where P is a unitary matrix: PLP* = diag(\y, . .
matrix P exists because L is normal and positive definite. C(t, s)

Cov [u(t), u(s)]

s defined fort > s as:
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(exp(—cA|t — s|) —exp(—c(At+ A;s))).

iffusivity ¢, noise scale o, and

acian v and «. For matrix-valued where ® = ¢vV'L and P is dgﬁned by the diagonalization of the

fractional Laplacian matrix: L = P~ L,P.

= P*C(t, s)P, Experiments

Tasks:

| interpolation of a spatiotemporal graph signal

- )\W|) The

I extrapolation of a spatiotemporal graph signal
Domains:

| heat and wave distribution over a one-dimensional line

I spreading of COVID-19 cases across the United States

11l spreading of chickenpox cases over Hungarian counties
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Fig. 4: SHEK fit to COVID-19 data for two states.

Fit of GP (SHEK) model to synthetic wave dataset (node: 1) Fit of GP (SWEK) model to synthetic wave dataset (node: 1)

SHEK on wave dataset (node #1). SWEK on wave dataset (node #1).
Fig. 5: SHEK and SWEK fit to synthetic wave data set.
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