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Preliminaries

▶ Graph: a set of nodes and a set of edges,
▶ Examples: molecules, telecom networks, ...,
▶ Spatial and spatio-temporal problems on

graphs,
▶ Uncertainty quantification is crucial for many

applications,
▶ In this presentation the graph is static and

the signal changes.

Figure: Molecule graph C6H6

Figure: Cable Network1

1
Lars-Örjan Kling (2002). ”CPP—Cello packet platform”. Ericsson Review (Ericsson AB) (2)
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Problem
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Goal: develop spatial and spatio-temporal probabilistic methods on graphs.
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Preliminaries: Graphs
▶ Graph: G = (V ,E),
▶ Adjacency matrix A:

A(i,j) = 1

▶ Weight matrix W :

W(i,j) = weight(i, j)

▶ Degree:
DW = diag(wi)

▶ The graph Laplacian L:

L = DW − W ,

where wi =
∑

j:(i,j)∈E
wij
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Figure: Graph, adjacency matrix
and degree matrix
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Gaussian Processes
▶ Motivation: non-linear regression,
▶ Prior over functions and likelihood:

p(f |θ) = GP (f ;0, Kθ) ;p (yn|f , xn, θ)

▶ Learning: infer underlying function given the
dataset and estimate marginal likelihood
p(f |y,x, θ),p(y|x, θ),

▶ Pros: data efficiency, tractability, probabilistic
interpretability.

▶ Cons: computational complexity, empirically
often worse than neural networks (for
high-dimensional problems).

▶ In order to apply to new domains, develop a
kernels.

Question: How to develop kernels for graph
nodes?

Observed Data
Mean
Confidence

Figure: Gaussian process
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Graph Kernels
▶ Kernel over a finite space,
▶ Any symmetric semi-definite matrix works,
▶ Can we incorporate extra knowledge in a kernel?

▶ topology,
▶ locality.

▶ Possible approaches:
▶ Geometric,
▶ Functional, ||f ||K should be small when f is smooth,
▶ Discretization of continuous kernel.

▶ Embedding distances does not work for arbitrary graphs:
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Graph Kernels: Diffusion
▶ Let us consider an equation

∂

∂t
K (x, t) = ∆K (x, t) (2)

Subject to initial condition
K (x ,0) = δ(x). (3)

.
▶ Solution (normalized Gaussian kernel):

K (x, t) = K (x0,x) =
1

(4πt)
d
2

exp

(
−∥x − x0∥2

4t

)
(4)

▶ Similarly the equation can be considered on graphs (Smola and Kondor,
2003)

∂

∂t
ft = −Lft , (5)

ft = f0e−tL (6)
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From Graph Kernels to spatio-temporal kernels

▶ Spatio-temporal prediction f : V × R → R
▶ Product of spatial and temporal kernel:

K (x , x ′, t , t ′) = K (x , x ′)× K (t , t ′),
▶ Product-separable kernels are not as

expressive as non-separable,

kprod((x, y), (x′, x′)) GP Sample 1 GP Sample 2

kns((x, y), (x′, x′)) GP sample 1 GP sample 2

Figure: Prod.-separable and
non-separable Matérn 5/2
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Can we do better? SPDE approach.

▶ SPDE Matérn kernels (Lindgren, Rue, and
Lindström, 2011). Gaussian field x(u) with
Matérn kernels is a solution to the linear
fractional SPDE:(

κ2 −∆
)α/2

x(u) = W(u),

u ∈ Rd , α = v + d/2, κ > 0, v > 0 (7)

▶ ∆ → −L, gives graph Matérn kernel,
▶ We apply the same to spatio-temporal

SPDEs.

Figure: Two-dimensional Gaussian
field with Matérn kernel.
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Graph Gaussian processes via SPDEs
(with ST John, Arno Solin, and Samuel Kaski)

▶ Using the analogues of well-known SPDEs
from spatial statistics, we derive
non-separable spatio-temporal kernels on
graphs

▶ Empirical evaluation: synthetic datasets,
chickenpox and the COVID-19 epidemic
forecast

Prior model
∂u
∂t = ∆u + dWt

Covariance

k(x,x′)

GP model

GP(m(x), k(x,x′))

S
p
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l
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ra

p
h

du
dt = −Lu + dWt

Time →

Working with the graph allows for di-
rect modelling of spatio-temporal diffu-
sion over the graph nodes as described
by the SPDE.
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Framework: SPDE → graph kernel

i Define an SPDE, using prior knowledge about the underlying process
ii Convert the continuous SPDE to a graph counterpart
iii Solve the graph counterpart
iv Derive corresponding mean and covariance function of GP on graph
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Instances of the framework
i Matérn kernel (

2ν
κ2 I + L

) ν
2

︸ ︷︷ ︸
L̃

u = w

ii Stochastic Heat Equation Kernel (SHEK)

dut

dt
= −cL̃ut + σ

.
Wt

iii Stochastic Wave Equation Kernel (SWEK)

d2ut

dt2 = −c2L̃ut + σ
.

Wt
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Results SHEK and SWEK
SHEK

u(t) ∼ GP(µ(t),Cov[u(s),u(t)]),

µ(t) = e−cL̃tu(0),

Cov[u(t),u(s)] =
σ2

c
e−cL̃t−cL̃⊤s

(ec(L̃+L̃⊤)min(t ,s) − I)(L̃ + L̃⊤)−1.

SWEK

u(t) ∼ GP(µ,Cov[u(s),u(t)],

µ(t) =
1
c

L̃− 1
2 sin(Θt)P

.
u(0)+ cos(Θt)Pu(0),

Cov[u(s),u(t)] = σ2Θ−2
(
cos(Θ(t − s)) min(t , s)−

1
2
cos(Θmax(t , s)) sin(Θmin(t , s))Θ−1

)
,

where Θ = c
√

L̃ and P is defined using
the diagonalization of the fractional
Laplacian matrix: L̃ = P−1L̃dP.
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COVID-19 graph dataset

▶ Each state is a node,
▶ Connections: adjacencies, flights,
▶ Target: the number of cases, the

number of deaths,
▶ Normalized and non-normalized by

the population,
▶ Use it: https:

//github.com/AlexanderVNikitin/

covid19-on-graphs

Prior model
∂u
∂t = ∆u + dWt

Covariance

k(x,x′)

GP model

GP(m(x), k(x,x′))

S
p
a
ti
a
l

G
ra

p
h

du
dt = −Lu + dWt

Time →

Working with the graph allows for di-
rect modelling of spatio-temporal diffu-
sion over the graph nodes as described
by the SPDE.

https://github.com/AlexanderVNikitin/covid19-on-graphs
https://github.com/AlexanderVNikitin/covid19-on-graphs
https://github.com/AlexanderVNikitin/covid19-on-graphs
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Experiments

Tasks (interpolation and extrapolation)
▶ heat and wave distribution over a

one-dimensional line
▶ spreading of COVID-19 cases across the

United States
▶ spreading of chickenpox cases over

Hungarian counties
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Weekly COVID-19 modeling in California
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Weekly COVID-19 modeling in Texas

SHEK fit to COVID-19 data.
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Experiments: SHEK vs SWEK

▶ SHEK: diffusion problems
▶ SWEK: periodic functions
▶ Non-separability is an advantage but

has computational cost
▶ the kernel can be chosen using

domain knowledge about the
problem:
▶ Epidemy distribution → SHEK,
▶ Long-term weather forecasting →

SWEK
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Fit of GP (SHEK) model to synthetic wave dataset (node: 1)
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Fit of GP (SWEK) model to synthetic wave dataset (node: 1)

Figure: SHEK vs SWEK on wave dataset
(node #1).
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Future directions

▶ New SPDE types and their application,
▶ Scaling graph GPs,
▶ Spatio-temporal models on manifolds,
▶ Approximation of continuous-domain

GPs with graph discretization.
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Summary

▶ SPDE framework for kernels on graphs
▶ SHEK and SWEK kernels for spatio-temporal problems
▶ Evaluated on synthetic and real (COVID-19 and chickenpox) problems

▶ This presentation: https://anikitin.me/bayescomp23.pdf
▶ COVID-19 dataset:

https://github.com/AlexanderVNikitin/covid19-on-graphs

▶ GitHub https://github.com/AaltoPML/spatiotemporal-graph-kernels

▶ Publication: https://proceedings.mlr.press/v151/nikitin22a.html
▶ Correspondence: alexander.nikitin@aalto.fi
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